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An alternative way to utilize the well known drift approximation for particle motion
in electromagnetic fields is proposed. Contrary to the traditional approach, in which
the motion of the guiding center of a particle is considered, in the suggested algorithm
the coordinates and velocities of the particle itself are evaluated. This approach is
found to give accurate results provided that the characteristic scales of the change of
fields both in time and in space are large compared to the corresponding micro-scales
of the particle motion in these fields (e.g., wavelength of radio wave is large compared
to the particle gyroradius in the magnetic field of that wave). Under this condition an
approximate analytical solution for the Newton—Lorentz Law, accurate within many
characteristic micro-timescales of the particle motion, is derived. This approximation
is exploited to advance a particle substantially within a single elementary step of the
algorithm, which can extend for as long-am; /m, >~ 2000 times the traditional one
for certain astrophysical plasmas. Utilization of this approach can give a boost of
productivity for the existing and new PIC codes, in which substantial computational
time is spent solving the Newton-Lorentz Law for superparticles. In the present
work the approach is implemented for the ultrarelativistic case, with the magnetic
field prevailing over, although being not necessarily much higher than the electric
field. The relevant computer code is developed and used to simulate the motion of
a particle in an electromagnetic field with a complicated profile. The results exhibit
a good agreement with those, obtained by direct integration of the Newton—Lorentz
law, using a conventional ODE solverg) 1998 Academic Press

I. INTRODUCTION

Plasma is a mixture of charged particles of at least two different species. The mass
different particles are usually very much (1836 times and more) different. Once the ma
a particle enters the equations of motion for it, the orbits of the particles of different spe
may have very different time and space scales. In the case of the thermolized non-relat
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plasma in a magnetic field, a configuration typical for laboratory plasmas, a characteri
space scale for a particle motion is its gyroradius, which is proportionghtowherem is
the mass of the particle. In a super-relativistic case the particle gyroradius and gyrope
are proportional to its energy, and in a heavily non-thermal configuration, like in the probl
of interaction of cold relativistic plasma beam with external magnetic barrier they diff
by a factor ofm; /me [1]. Such a difference of spatial and temporal scales presents a gr
problem for numerical simulations of plasma phenomena. Not only the accuracy is los
the particle motion is integrated with a too large time-step, but also numerical instabilit
can arise [2, 3].

It is also often the case that the scales of the self-consistent fields are governec
dynamics of the heavier particles. In collisionless astrophysical shocks, for example,
width of the shock is usually theroton gyroradius, or larger [4]. External fields, which
dominate in some phenomena, may also be large-scale. In such configurations, the rel
field variation on the scale of the electron gyromotion can be quite small.

A pushing scheme, which is substantially more economical than traditional short tin
step pushers (see, e.g., [5]) under the mentioned conditions, is suggested in the present;
The time interval of a single push can last for many electron time-scales, and the def
of the orbit of an electron being pushed are not lost. The paper deals exclusively with
new pushing method, while the incorporation of the novel technique into a self-consist
plasma simulation package is the course of the ongoing work.

Configurations, in which plasma bulk is ultrarelativistic and fields are weakly nol
homogeneous on electron micro-scales, have recently attracted a great attention of n
bers of the astrophysical community, due to the availability of new data obtained frc
y-telescopes, like BATSE on board the Compton Gamma Ray Observatory and meas
ments of super-high-energy cosmic rays. Both such photons and cosmic rays are believ
originate from huge regions, in which particles are accelerated in the process of their inte
tion with large-scale strong electromagnetic fields. Physical properties of such structure:
so peculiar, that their theoretical models can usually not be verified without numerical sir
lations. Kinetic effects and instabilities play an essential role in those phenomena, wt
eliminates the possibility of hydrodynamic or hybrid treatment. Present-day successe
truly kinetic study of such configurations are limited to either an incorrect mass ratio (s
below) or short-scale 1D runs [1, 6]. The experience accumulated by these authors sug
that the traditional PIC approach could hardly be adequate for so complicated and unu
plasmas. A large pool of competing theoretical models expressed in hundreds of pa
published during the last several years exists, which can be neither tested nor refined d
the lack of appropriate numerical algorithms. The present paper is an attempt to const
such an algorithm.

Several methods were proposed since the first PIC simulations to overcome the menti
difficulties. One of the first ideas was to modify (decrease) the ion-to-electron mass r:
artificially, so that the scales were not separated that much. The effect of incorrect n
ratio on the results of simulations was studied numerically [7, 8] (in the paper [8] the m:
ratiom; /me = 64 was found to be high enough), but itis not always knayeniori whether
a simulation with a modified mass ratio would lead to qualitatively correct conclusions 1
a given configuration [1], and full-scale kinetic simulation with the right ratio may be to
expensive to be carried out [9].

In hybrid treatment [10—16] the idea of simulating all the light particles one-by-one wi
given up, and electrons were treated as a fluid. Certain kinetic aspects of the phenor
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were clearly lostin such an approach [17, 18]. In another modification of the hybrid mett
invented to account for kinetic effects due to super-thermal particles, energetic elect
were treated as particles, and thermal electrons as a fluid [19, 20].

The time scales for particle and field advance were separabebitraveragedilgorithms
in such a manner that kinetic effects were not lost [17, 21]. Particles were advanced
sequence of sufficiently small time steps, so their trajectories were properly resolved, cu
and charge densities were accumulated over a large number of such “micro” time steps
field equations were solved once in a much larger “macro” time step. The effects of f
variation on particle trajectories were not lost. We emphasize that in that technique a pa
micro time-step should be small enough, so that a version of a traditional ODE solver (
Boris push [5]) could be used. In threct implicit method [22—24] particle coordinates
were evaluated on the basis of the values of electromagnetic fields taken from the next
step and the predictor iteration for the fields was constructeiinpficit momentmethod
[25-28] fluid equations were used to predict future fields. An orbit-averaged algorithm
successfully merged with implicit models [29]. The primary goal of orbit averaged a
implicit codes was to overcome the time-step constraint, imposed by numerical stak
requirements, in the cases when accuracy considerations did not require that small &
step. This makes integration of the Newton—Lorentz law for particles with a large time-¢
possible, at the expense of filtering out all the high-frequency phenomena from the re
of simulations.

There exists a theoretical approach to problems of particle motion in electromagr
fields, known adrift approximation which dates back to Alien [30]. In that approach
the particle motion was presented as a superposition of “fast” oscillations—gyrorotati
around a magnetic field line and a slow “drift"—a displacement of the guiding center of
particle orbit. The fast oscillations may be theoretically filtered out of the particle equati
of motion, and the resulting drift equations solved. Numerical implementation of the d
approximation is known as gyrokineticmethod [31, 32]. This method was merged witt
most of the other techniques, e.g., [33, 34].

In yet another method, which might be calleeimi-analytical particle trajectories were
calculated analytically in some approximation, and the obtained expressions were us
advance particles over a large time step [35]. This approach was successfully applied 1
problem of particle-wave interaction. It was also merged with the hybrid approximation
that the resonant particles interacted with the wave in a kinetic manner, while the bul
plasma was described as a fluid, with the kinetic effects included in the source terms ¢
fluid equations.

The presented algorithm is also semi-analytical, which makes it methodologically sirr
to [35]. The coordinates and velocity of a particle itself, bat of its guiding center, are
calculated analytically, under the assumptions of the drift approximation. The resul
formulae are then implemented numerically. The total computational time required f
single push of a particle is independent of the number of its gyrations around the gui
center, which makes use of the proposed pushing technique in kinetic simulations of he
ion or super-relativistic plasmas with realistic ion to electron mass ratios possible.
presented derivations and simulations are performed for relativistic particles, and
direct application to the non-relativistic case can lead to substantial inaccuracy. We stt
in detail the “gyro” case, i.e., the configuration of the fields wil > |E|, leaving the
opposite possibility, if the approach may be effectively extended for it at all, for futt
study.
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A simplified version of this algorithm, the so-calleglcloid approximationwas imple-
mented long ago [36], but the fields were kept constant during the particle pushing time s
and as aresult a particle could be pushed by no moreghgnf acyclotron periodin atime
step with a reasonable accuracy. See also [37] for discussions of the cycloid approxime
from the point of view of time-reversibility. Similar ideas were implemented in cylindrica
coordinates in [38] for a computational study of the negative mass instability. Parti
gyroradius was not small, compared to the scale of the system in that configuration, bu
fields were almost constant along particle trajectory and a slow change of the gyroradiu
time was computed. It was noted several times (e.g., [39]), that the cycloid approximat
works well only if the time step is small enough, so that the fields can be assumed cons
within the time step. Our ideas may be viewed as a next step in the cycloid method, w
the change of the fields along the particle path is accounted for more accurately. As we
see, it allows us to extend the integration of particle equations of motion to very long til
steps.

Runge—Kutta style correction is proposed to reduce by purely finite-difference techniq
the error caused by certain analytical assumptions. The second-order scheme was ir
mented and found effective in terms of accuracy of algorithm versus computational ti
competition.

Since in this work we present a particle pushing algorithm only, we leave the discuss
of a suitable field solver out of consideration. We address neither numerical stability, |
effectiveness of any code, based on the proposed pusher. We also do not present any
consistent plasma simulation, where the new pushing technique is used. Some analyse
hint that overall code performance may be substantially degraded by inaccurate samy
of field profiles by particles. That provides a certain enthusiasm about our pushing sche
in which fields are sampled very accurately, provided they are smooth enough.

The material is presented as follows. We first (in Section Il) formulate the problem
terms of particle equations of motion, and then (Section Ill) briefly review a fully integrab
case, when the fields do not depend on coordinates of a particle. Next (Section V), we ok
the main formulae of our drift approximation and introduce a finite-difference correction
these analytical formulae. There we also discuss the accuracy of the results obtained
apply the proposed algorithm to a number of field configurations and discuss the resull
the tests in Section V. We briefly outline our main conclusions of the paper in Section \

II. FORMULATION OF THE PROBLEM

In this work we will consider the numerical solution of the Newton—Lorentz law for th
motion of a relativistic particle in electromagnetic fields. The algorithm is developed for
single particle if2+1)D, meaning that 2 space dimensiorg(dy) are taken into account
together with the timet] coordinate. The three quantities compose a vecter{ct, X, y}
in Minkovsky space, which we will refer to as a coordinate of a particle hereafter. He
and belowc denotes the speed of light in vacuum. The fields involved includexthe
andy components of the electric field, and theomponent of the magnetic field. Other
components of electromagnetic fields cannot ent&t-a1)D problem in principle. The
Newton—Lorentz law for the particle may be written in the covariant form [40],

du e -
4= @F(x(s))u, 1)
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where

0 Ex(X) Ey(X¥)
F=|Ex 0 B®X )
Ey(xX) —BX) 0

is the electromagnetic field tenserandm are the charge and mass of the particle, and
is the interval, which plays the role of an independent variable. The signature of the m
tensor used is+ — —).

The velocity vector satisfies the condition [40]

lul =1, ®)

if the norm is understood in the Minkovsky sense, in accordance with our choice of
metric tensor,

a-b=a'bt —av*—a'b’, Ja=a-a (4)

We are going to use the above convention for the scalar product throughout this pap
could be easily checked that: Fu = 0 for anyu, and thus if the velocity of a particle is
initially chosen to satisfy (3), it would follow this normalization rule forever.

Particle coordinates and velocity are connected through the equations

dx

ds = u(s). (5)

The initial conditions for these equations are
u(s =0) = usg, Xx(s=0)=0. (6)

The major assumption of all the future work is that all the functiBpex), Ey(x), B(x)
change only slightly and smoothly on the time and space scales of the orbit of the pat
(i.e., gyroperiod and gyroradius in the cak# < |B| and the typical energy raise time and
scales in the opposite case). We will derive some general formulae for an arbitrary rel
between E| and|B|, but we will later confine ourselves with the cd&d < |B|, but not
necessarilyE| « | B|.

Ill. MOTION OF A RELATIVISTIC PARTICLE IN STATIONARY
HOMOGENEOUS FIELDS

We first review the simplest, fully integrable case, in which the fields do not depend
X = {ct, X, y} coordinates and thus solve the “unperturbed” problem. The general solu
of the system of linear ordinary differential equations (1) for the velocity is

uL(¢) = Colp + Cu e +Cou_e™, @

where we switched to a new dimensionless independent vagablée/ mc?)v/'E2 — B?s,
later referred to as “phase” insteadsodind the eigenvectors of the matFixare
B E
Ey Ex
Ug = Ey , UL = B?:t)”f s (8)
—E Ex E
x -Bg g
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E? = EZ + EJ as well aqu = v/E2 — B2 are introduced for convenience. We notice that
is a Lorentz-invariant quantity, i.e., it does not change under the Lorentz transformatior
electromagnetic fields [40]. The full set of eigenvalues of the mati${0, +.}. The above
normalization of the eigenvectors has the property that in the important fases|B|

as well ag B| « | E| both these vectors and the coefficie@tg C,, C_ remain finite. In
the caseE| > |B| u and together with it all the quantities entering these formulae are re:
while in the opposite casés| < |B| only the real part of the complex functions (7) are to
be considered. We switch to another form of writing the solution (7), which is purely re:

UL (¢) = Colo + C(Ue fe(@) £ Ug fo(h)). ()]

Here and below upper signs correspond to the ¢B$e- |B|, and the lower ones to the
opposite cas¢E| < |B|. The special casg =0, i.e.,|E| =|B| is not covered here, for
the reasons made clear below, but may be found in [40]. “Evie$) and “odd” f,(¢)
functions, which enter these expressions are

fe() = cosl¢),  fo(¢) =sinh¢);  |E| > [B;

. (20)
fe(¢) = cog¢), fo(¢) = sin(¢); |[El < [B],
and{up, Ue, Uo} form a new set of vectors with
B E 0
1 1 x
Uo==| Ey |, Ue=+ BY |, u=|2]. (12)
A A
—Ex _BE 5
E E

where we introduced a real quantity= |u1|. We will call these vectors “eigenvectors” of
the matrixF, although they are strictly speaking not. This should not cause a confusic
because we will not use vectans, u_ in the rest of this paper. We will use Greek indexes
«a, B for enumerating these vectors.

We notice that the eigenvectoig, Ue, Ug} are orthogonal to each other,

luol =F1,  |uel =%1,  |Uol=-1 = Uy-Usp =0, a#§p, (12)
and it may be easily checked that the mafitriacts on them in the following way:
Fup=0, FuUe=4AUy, FuUy= AUe. (13)
We will also exploit the “vector product,” computed according to the rule
(axb) =édkajb, {i, ],k = {t,x, y. (14)
€k is the antisymmetric tensa*¥ = 1. The following identities can be easily established
Vx(@xby=aV-b)y+((b-Via—b(V-a)—(@-V)b, UexUy=Ug, (15)
and since
Ue X Ug - Ug = F1 (16)

we will say that the basifle, Uo, Ug} is left- right-oriented.
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If we compute the Minkovsky norm of the expression (9), recalling the normalization ri
for the covariant velocity (3) and the basic properties of the trigonometric and hyperb
functions, we come to the following relation betwegrmndC,

C?-Ci=+1, 17)

which leaves only one @, Co to be defined from the initial conditions. Scalar-multiplying
(9) by ug, and then by andu,, we derive

u-u u-u
Co= FUlgg-Up,  felpo) =+ Ce, fol¢o) = F C", (18)

wherego= ¢|s_ IS the value of the phase in the starting point of the particle trajecto
We integrate the linear solution (9) over the interval, to obtain the coordinate of the par

[
XL(P) = me_x {Colo(¢ — ¢0) + C(Ue fo(¢) + Uo fe(¢h)) — C(Ue fo(dho) + Uo fe(0))} -
(19)

This expression also satisfies the initial condition for the coordinate. Thus, formulae
(17), (18), (19) together with definitions (10), (11) solve the unperturbgg) (= const,
B(x) = const) linear problem (1), (2), (5), (6).

IV. THE ANALYTICAL SOLUTION OF THE EQUATIONS OF PARTICLE
MOTION IN DRIFT APPROXIMATION

Now we turn to the non-linear problem, i.e., we no longer keep the fields fixed. I
important here to overcome a temptation of presenting the perturbed velocity in the f
U = u_ + uy, as itis often done in semi-analytical methods (e.g., [35]), because in suc
representationiy, appears to be proportional #& and fails to remain a small correction
within even a modest phase change, which would undermine the use of the perturb
theory. We seek the solution for the velocity in a less evident form,

u(@) = Co(@)llo + C() (Te fe(¢) % To fo()), (20)

in which the phase remains undefined so far, the constar@s are replaced by functions
of the phase, and the eigenvectagsare no longer assumed to be constant, but deperd or
For each given value of the vectoof the time-space domain the quantitieg(x), Ey(x),
B(X), 2(X) = |Ex(X)? 4 Ey(x)2 — B(x)?|/? are taken in that particular poirtand a set of
eigenvectors is computed according to the formulae (11). The végtanght thus be called
“local” eigenvectors of the matrik (x). It is very important for all our future derivations
that the rules (12), (13) hold for these local eigenvectors (with the “local” eigennunber
substituted in place df); it does not matter that all these quantities are dependentTdre
functions fe(¢), fo(¢) remain trigonometric or hyperbolic as before, exactly as defined
(10). The relation (17) remains valid f&, C, due to the validity of formulae (3), (12), no
matter whetheF is a constant matrix or not. We plug the expression for the velocity (2
into the Newton-Lorentz law (1) to obtain

Colio + C'(fle fe() = Tio fo()) + Colly + C (U fe() =+ T fo(g))
N . ek
+ G ({ie fo(@) + Uo fe(@))9 = iC% (Tie fo(@) + o Te(@)), 21)



48 MICHAEL V. SMOLSKY

where the prime symbol stands for the derivative with respect to the intepidd, When
performing the substitution, the rules (13) may be used. We now require that “large” ter
proportional to both. and¢’, get canceled by each other, which leads to a particular choit
of the new independent variable:

do _
ds

V[ Ex0? + By (007 - B2

v Pls=o = o (22)
To extract a scalar equation f6g from the vector Eq. (21), we scalar-multiply it biy:
Co = Clip - (Flie fe — Uo o). (23)

The following identities were usedg - lig= (To- Uo)'/2=0, 0, - Uo = (T, - Uo)' — T, - Uy =
—,-0p, v = {e, o}, which follow from the rules (12). The expression (23) is &xact
but implicit solution of (1), because enters it as a coordinate, at which eigenvectors ar
evaluated. That formula also hold€dfandC, are interchanged, as it follows from (17). It
is more useful for our perturbative approach, than (1), because it involves only terms wt
are small under our assumption.

Next, we replace the derivatige/dswith @ - V,

0 0 b
V=g— — — 24
etcat+exax+eyay (24)
to obtain
éé) = é(:FDe fe — U fo) - (COGO + é(ﬁe fe & U fo) - V)To. (25)

Together with (23), (25) is also an exact formula.

We now exploit our major assumption that the field components vary only slightly a
smoothly in space and time. The derivatidé,/dx) ought to be evaluated using the known
derivatives of the field components and may be considered small in the drift approximat
As it is evident from (25)C, C, vary only a little along the trajectory of our particle,
and we may substitute some constant values for these quantities, from within the inte
of their variation into the RHS of (25). We will drop the tilde symbol from abovexan
dependent quantity whenever we imply such a substitution of that quantity from the ral
of its variation. We will later specify which exact value should be substituted to achieve
maximum accuracy.

In the rest of the paper we will confine ourselves to the “gyro” cisex< |B|. Such a
choice is dictated by two reasons: first it is a more frequent configuration in both techni
and astrophysical problems, and second, the proposed method allows integration of pa
trajectory over a greater time step in this case, and is thus more worth using. This is bec
in the “acceleration” caséE| > |B|, functionsfe, f, grow exponentially and become very
large after even a moderate phase shift, which limits the range of applicability of the metl
considerably.

It proves useful to introduce a matrix

A(B/AD) A(BX/AD) A(BW/AY)
cot X ay
- IEy /3% IEy /3% IEy /3%
V = cat X 3y (26)
COEAD 00/ aEx0/E)

cot X ay
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of partial derivatives of components @/ and define “matrix components” of the eigen:
vectors as

Vo=V, V=10, -Vig, Ay=Vi-0,. (27)

Next, we will use the symbo} to designate the integration over an integer number-
periods of our trigopnometric functions. Moreover, for compactness we will drop expli
substitution of the boundaries of integration. Thus, we will wiitg sing d¢ = —¢ cosg
instead off(f””“ x Siny dy = ¢ cosgp — (¢ + 2w n) cos(¢p + 27 n). We will use the letter
A to denote the difference between the values of some quantity over the initial and -
points of the particle trajectory.

With these acronymsin mind, we integrate Eq. (23) and evaluate the particle displacer
For simplicity, we do not intend to find all the unknown quantitiearatvalue of the inter-
val; we willinstead confine ourselves to those valuessfwhich correspond tdg = 27n,
n=123,.... Firstofall, we find

~ mc ~ mc
ACo ~ ﬂn?cz(vee‘i‘ Voo), AC ~ ﬂnTCCO(Vee‘i‘ Voo)- (28)

To derive these formulae, we integrated (25) by parts after repléigirg A(Tio/2)'. Such

a substitution is valid, sincé is orthogonal to botlfiie andi,, and thusﬁ(ﬂo/i)/ clOeo =

Gg - Ueo. Those were numerical experiments we carried out, which hinted us toipus
under the derivative operator. Indeed). ifs kept as a constant factor in the expression fc
ACo, with a correspondent redeclaration\af;, Vo, the accuracy of the formula, which
would replace (28) in that case would become substantially lower. In fact, together \
(28) the formula for particle displacement to be derived also gains in accuracy from ¢
a substitution. Technically, only one &f€C and AC, should be determined by the above
expressions, while the formula (17) should be used for the other in order to preserve
velocity normalization rule (3).

We once again exploit integration by parts, to integrate (5):

AX = (M&/e) 7{(6000 + C(liecosg — Uy sing)) /2 de
~ (ME/er){CoUog + C(UeSiNg + Uy COSP)}
— (m*c*/e?)) 75 (Collo/1)' ¢ dop
— (m?c*/€?h) ]{ ((Cie/1) sing + (Ciio/2) cose) dep (29)

The first of the integrals in the RHS evaluates to

}{ (CoUo/A)' ¢ dgp ~ uo{(nzn2 + 7N¢0) C2(Vee + Voo) + 27NC Co(SiNghoVeo + COStoVoo)
. 1
+ mnsin 2¢0C2(Vee — Voo) + §7Tn Ccos %Ocz(voe + Veo)}

+ 2(%n? 4 Tnghg) C3Vo + 2N SinghoC CoVe + 277N c0S¢oC CoVoo.
(30)
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Now we turn to the second integral. The following preliminary considerations are
order:

f ((Te/2) sing + (To/2) cOSP) dgp

~ TNCA((Ue/A - V)(To/%) — (Uo/A - V) (lle/1))
= 7NnC(Vi x Up/A? — V x (lo/%) + UeV - (Uo/R) — UoV - (Te/R)).  (31)

The vector product was introduced in (14) and its features (15) were used.
We are now ready to accomplish the evaluation of the second integral in (29):

7{ ((Cue/A) sing + (Cuy/A) cosg) d¢
=7NC((AoUe — Aelo) /A2 — V x (Tig/A) + UeV - (Tlo/A) — UoV - (Tie/2))
+ 7NC3(VeoUo — VooUe). (32)

Let us consider the case of a very small electric field, e.g., the vicinity of a knot in
Langmuir wave, excited in a magnetized plasma. The even and odd eigenvectors, if che
according to (11), are very unstable in this domain. This breaks our main assumption
they are quasi-stationary along the particle trajectory. A more suitable choice of th
eigenvectors, which however does not affect any of the expressions obtained abov
proposed below.

Let us choose some vector fielx), and introduce

\7e = l:l() X a, \70 = \76 X ljo =a— (ﬁo . a)flo. (33)

If we require that the even vectdig satisfies the same normalization rule,lgg12), we
conclude thattip - @)% — |a| = 1, and, consequentlg,may not be directed alorig. Other
normalization rules (12) are clearly satisfied with the new eigenvefiigr§e, V,} in place
of {up, Ue, Uo}. The above choice of sign &f makes the tripletlip, Ve, Vo} right-oriented,
see (16). In accordance with the invariance of our solution under the rotation of even
odd eigenvectors, we may use the newly constructed set as a basis, indteéadigfi,}.
That set is more appropriate for our purposes, because smoothness of electromagnetic
causes smoothness of all three of the new vectors, provided(has smooth and is not
directed alonglg in any point of our space-time domain. Since we are most interest
in the gyro casdE| < |B|, we may choose&(x) to be constant and directed along the
x-axis. Such a choice d is impossible if we do not assumé&| < |B|, because in the
acceleration casgE| > |B| lp might be at some point directed along thaxis as well,
thus being collinear t@, which is forbidden. We do not substitute this particular set o
the eigenvectors, although the numerical results presented below were obtained und
We leave the choice of eigenvectors arbitrary within the mentioned bounds (they shc
form a right orthogonal triplet, the vectéip defined in (11) and their components smooth
functions ofx). In the following formulae byi, we mean an arbitrary set of vectors which
satisfy the mentioned conditions.

Let us now take a closer look at the formulae (28), (29), (30), (32). Each of these |
pressions is a sum of terms, proportionaftcsing, cose, or products of those. Since all
the above derivations were primarily designed for the use in cases, when a particle rot
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a large number of times around a magnetic field line, these terms might be of very di
ent orders of magnitude. Indeed, even after a single gyrorotation, the difference bet\
such terms is~¢ = 27, and in realistic configurations a particle may rotate by hundre
of periods in a single time step of the algorithm. It seems reasonable to introduce a |
parametep besides our standard smallness parameter into consideration. We will eval
the terms, proportional to the highest powergofwith a higher accuracy with respect to
the smallness parameter than the other terms. A standard procedure of integration by
may be used for this purpose. We will illustrate the procedure with a simple example,

f f ax? 1
/ axdx= / ad— = A—— / ——x?dx ~ axAX + 12Aa(Ax)2 a~ const
I 1 (34)

where the bar designates taking the arithmetic average of the boundary paintg! +
y')/2, andA stands for the difference over the intervay =y’ — y'. The symbol$ and
f denote the left and the right points of the interval, respectively. This procedure leac
the standard “arithmetic average” rule of the derivative approximation in the simple cas
J adx, a~ const, which we apply to the evaluation®€ instead of (28). This provides us
with the means to fix the arbitrariness in choosing a particular value of a quantity from wi
the interval of its change over the particle orbit in order to achieve the highest accurac
the formula.

We now write the expression for the displacement and final coefficients of a particle
an integer number of gyrations in the drift approximatiap(=27zn,n=1,2,3,...):

_ _ e _  _
ACo ~ C'zq(l +Cyq),  whereq = nnm?(vee+ Voo);
Ax ~ (m&/e){27nCjug /A" 4+ A(Cuogo/A + C(UeSingg + Uy COSo) /1) }

+ nn(mzc“/ezx_)ﬁo{ (TN + $6)C*(Vee + Voo) + 2CCo(SiNgoVeo + COSPoVoo)

. — — 1 — —
+ sin 2¢062(Vee — Voo) + 5 cos %Oéz(voe + Veo)}

+ 2en(mct/€0) { (N + ¢0)CoVo + SingCCoVe + cOSpoCCoVo }

+an(m?ct /1) C{ (Aolle — Aello)/2° — V X (lo/%) + UeV - (Bio/%)

- Gov - (8e/X) } + wn(m?c?/€23)C(Veollo — Voolle)

+ 71 n?(mct/e?) A (CPUo(Vee + Voo) /A) + %nznz(mzc“/ez)A(CSVO//\).
(35)

There is yet one more problem about these formulae. Indeed, we know how to evaluat
displacement of a particle, provided we know the eigenvectors and valkemadhe final
point of the particle trajectory. This point, however, remains unknown until we apply |
above expressions. Although not the coefficients, as in (25), but the particle displacem
still given by an implicit expression. We note again that the terms in the formula for parti
displacement are of different orders of magnitude. We will try to evaluate the largest te
which is proportional tm and does not contain derivatives of the field (it is due tdgheB
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drift) with the highest accuracy, and will use a rough estimate for the eigenvectors «
values, when evaluating other terms. We may choose a linear displacement, which re:
from theE x B drift, as a point at which to take approximate values for eigenvectors al
their final derivatives, and we will define the large term with the implicit approach,

AX = 2en="Co— % AX) + AX (36)

vt expl’

where Axexp designates smaller terms of the formula (35) together with the large ter
evaluated at the starting point. The matrix of partial derivatives occurring in the abc
formula is exactlyV , and it needs to be computed for other purposes as well.

After we formulated the final analytical result of our algorithm, we turned to the issu
of its accuracy. The perturbation parameter used in the algoriththn€j&C (or a similar
expression witfCo), and it is assumed to be small. Besides this, the quantities relatéd tc
are assumed to be constant throughout the integration step here and ther@nalytieal
part of the work, but this restriction is softened a little by applying a higher order approz
to the finite-difference formula. We emphasize thtat is not used as the perturbation
parameter of our expansion. There is a major difference between the\twe: n, while
AC  V n. Moreover, there are no termsV n? in the expression foAC, contrary to the
formula for Ax.

As it follows from (26), (27), (28), the difference between the non-linear coefficiel
and its linear counterpart depends on the phase and partial field derivatives througt
parameter

£ o |AL|/ A, (37)

where bar anc\ operators are defined as above. The choiceas the natural quantity for
the accuracy estimates instead of some component of the electromagnetic field is dictate
its Lorentz invariance. Our analytical derivation provided the correct linear dependence
all the quantities obtained an but we formally disregarded the non-linear terms, quadrati
in . When we used higher-order implicit techniques for writing expressions (35), we rais
the accuracy of our finite-difference expressions over the analytical ones by one more fe
of e. We therefore expect the error of our algorithm to be at least culzic in

This estimate for the accuracy is good only for the configurations, when parameter:
the problem do not vary much withinsingleperiod of the particle motion. If they do, the
approximate equalities similar §Voe cos¢ d¢ ~ 0 are no longer valid, and we relied on
such expressions heavily in our derivations. We come to a conclusion that the algori
works better for the case of very many gyrations of a particle in very slow-varying fields th
for the case of less rotations in the fields with larger gradients or rise speeds. Quantitati\
we expect that besides the cubic inaccuracy, the algorithm has also a linear one, the I
however, being important only if the number of gyrations is small. In other words, we m
say that the linear inaccuracy prevails over the cubic one only in very accurate simulatic

8C X &3, if & > ecr
ol 04 R (04 { (38)

g, if ¢ < écr,

where R is some fixed length, i.e., particle gyroradius. We will demonstrate this effe
numerically in Section V.
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V. RESULTS OF A NUMERICAL EXPERIMENT

In this section we present the results of comparison of the proposed algorithm with a v
tested standard method of humerical integration of the system of differential equation
particle motion. The traditional technique returns a set of coordinates and velocities, w
form a curve inx space. Our algorithm returns just the coordinates of a point, where
particle is located after the specified interval of time. The essence of the test is to ve
how far this point lies from the curve, generated by the traditional solver. As the sol
we used the ode45 routine from the matlab [41] package, which we ran with the accu
10-°. We verified that significant modification of this parameter did not change those dic
important for our comparisons. Matlab’s internal number representation is double word
the correct processor arithmetics in this range can be guaranteed.

For the particular problem we used a typi€aH- 1)D configuration. A large magnetic
field B pointed in thete, direction, and a smaller electric fieElwas applied along the
andy directions. All the fields depended weakly on all the three componentsTdiese
fields caused gyrorotation of a particle along #reis with the drift of the guiding center
of the particle orbit due toE x B” as well asVB and gradients oE. The fields didnot
satisfy Maxwell's equations, in particular Faradey’s law. We consider the independenc
our algorithm, which treats particles of the equations for fields to be its advantage.

Three sets of the test were run. In one of them these non-linear drifts were large
that the proposed algorithm worked well only within a small time interval (just a fe
gyrorotations), and in the other two the drifts were small, so that the algorithm provi
quite an accurate result when a few tens of gyrorotations were computed in a single
step. We emphasize that we mean here solely drifts, proportional to partial derivative
the fields. The magnitude of the linear diftx B should not affect the accuracy of our

0.4

0 20 40 60
n

FIG. 1. Relative difference of the parameteibetween the final and initial points of the particle trajectory
as a function of the number of gyrationsfor different field configurations being simulated. Thin line, weak
field gradients, monotonous case; thick line, weak field gradients, non-monotonous case; dashed line, stron
gradients. Lower abscissa, for the case of weak; upper abscissa, for strong field gradients.
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FIG.2. Normalized particle (solid line) and (dashed line) coordinate versus the number of particle gyration:
in the monotonous case with weak gradients, as generated by ode45 reutinemalized; ande, normalized
x coordinate, as evaluated with the new algorithm for 3 independent jumpaifrethto n = 40, 50, 60.

algorithm. Those two kinds of tests with small field gradients differed from each other
the time-space dependence of the fieldaras a monotonous function ¢fin one category
and had a local extremum in the other. When speaking about the extremum we do not n

gyro-scale variations of, but rather variations on the scalesk.

The following should be made clear before we discuss the results of the simulatic
We found it more illustrative to run the algorithm in the regime, when its inaccuracy is ju
visible from the plots. In practical simulations one should choose a smaller parar(@igr

to obtain robust results.
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FIG.3. Normalized particle (solid line) and (dashed line) coordinate versus the number of particle gyration:
in the non-monotonous case with weak gradients, as generated by ode45 squiimmalized ; ande, normalized
x coordinate, as evaluated with the new algorithm for 3 independent jumpaifrefhto n = 40, 50, 60.
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FIG.4. Normalized particlex (solid line) and (dashed line) coordinate versus the number of particle gyratior
in the case with strong gradients, as generated by ode45 routimermalized ; ande, normalizedx coordinate,
as evaluated with the new algorithm for 3 independent jumps frea® ton=4, 5, 6.

Since the natural independent variable of our analytical formulae ke number of
particle gyrations around a magnetic field line, we chose it as an abscissa for most o
plots. Time and space coordinates are normalized by the gyroradius in some typical mac
field for a simulation, which is not necessar§y computed for some typical Lorentz factor
of a particle. Since the gyro phase of the particle is an independent variable, the Lor
factor is the only parameter needed to specify the particle velocity exactly, since the velc
vector is directed at the angpewith respect tdi. Of the three particle coordinatéis x, y}
we plot only two ¢ andx) for compactness. We did not consider all the field componer
worth plotting versus every coordinate for every simulation. We instead plotted just

1.1
1.0
b@
—
09
0.8 ' ‘ ‘
40 50 60
n

FIG.5. Normalized particle Lorentz factor in the case of monotonous weak gradients (line), as generate
ode45 routinex, the same, evaluated with the new algorithm for 3 independent jumpsifeetton = 40, 50, 60.
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FIG. 6. Normalized particle Lorentz factor in the case of non-monotonous weak gradients (line), as ge
rated by ode45 routines, the same, evaluated with the new algorithm for 3 independent jumpsrfrod to
n=40, 50, 60.

parametee(n), as it is defined in (37), see Fig. 1. These data are clearly extracted from
direct numerical integration by ode45. We define absolute errors of the simulation as

8x = {(At - A'[ode)z + (AX — Axode)2 + (Ay — Ayode)z}l/Z’

(39)
8T = |AT — AT,

wherer is the particle Lorentz factor ange marks the quantities generated by the ode4!
routine. It is interesting to notice that the normalization of the eigenvectors (11) is st
thatC, Cy, andI" are of the same order of magnitude. When estimating the inaccurac
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1.00 ¢

L 0.95

I

0.90

0.85 :
0
n

FIG.7. Normalized particle Lorentz factor in the case of strong gradients (line), as generated by ode45 rou
*, the same, evaluated with the new algorithm for 3 independent jumpsfeeiton=4, 5, 6.
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FIG. 8. Inaccuracy of the new algorithm inx (see formula (38)) as a function of field variation over the
scale of the particle orbits, for the monotonous case with weak gradiemtshigh gradient case, marks the
critical parameter for the weak gradient case.

visually from the plots, one should bear in mind taat andcAt coordinates differ by an
order of magnitude.

To avoid misunderstanding we also note thttthe discrete marks on the plots (star:
and bullets) correspond to independsingle iterationpushes from the phase= 0, which
was thus the starting point of any push presented on the plots. Formulae (35), (36) !
applied only once to obtain each such set of marks on the plots from the particle pos
and velocity an=0.

From Figs. 4, 7 one can see that the algorithm is reasonably correct withir0% if
the number of gyrations within thisis about a few. Comparing those plots with Figs. 2
3, 5, 6, we notice that the accuracy is at least a few times higher for the large numb
gyrations (with the same value of. We believe this is mainly due to the competition o
two terms in (38). This is also supported by Fig. 8, which clearly indicates that we ar
the cubic regime of the formula (38) in the weakly non-stationary cases, and in the lir
one in the configuration with larger field gradients.

It seemed to us to be an interesting feature of the algorithm that the fields or at |
A(¢) does not have to be monotonous over the particle trajectory although it was asst
that the partial derivatives of all the field components are constant across the time
We attribute such a gain of accuracy to the correction we introduced in the final-differe
scheme.

From comparison of the plots illustraticgandt dependence omwith the ones devoted
to the Lorentz factor it is evident that the latter is computed with a higher accuracy t
AXx. That is probably because the formulae o€ (or ACy) are substantially simpler than
those forAx. As it was mentioned above, we gained a lon accuracy with the proper
declaration ofV.

An important characteristic of a PIC code is the amount of time the code spends
elementary push of a single superparticle. This time usually counts not only CPU cy
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spent in a ODE-solving routine, but also field interpolation expenses, superpatrticle gat
scatter operations, etc. It is therefore hard to estimate the effectiveness of solely a pus
algorithm before it is incorporated into some working PIC code. Fveny preliminary

considerations we were able to conclude that the new pusher requires about a few
times more CPU cycles per particle per push than a traditional scheme, similar to B
push. On the other hand, the time interval the new push allows (under the conditions o
applicability) may be up to hundreds of times longer than a traditional pusher would per
(see Figs. 2, 3, 5, 6). That means that in a wide class of ultrarelativistic problems the 1
scheme would be about an order of magnitude or more superior to a traditional one.

VI. CONCLUSIONS

The proposed new algorithm for long time-step advance of a relativistic particle in weal
non-homogeneous and non-stationary electromagnetic fields|Rjth |E| in (2+ 1)D
proves to be a good alternative to traditional particle pushing, i.e., Boris push [5] in st
configurations. The CPU time required for a single push is independent of the duratior
the push (the energy of the particle). The linEax B drift is accounted for with a higher
accuracy, and all the non-linear drift€ B, polarization, etc.) with similar accuracies since
they are not separated formally from one another. The accuracy of the particle data afte
push is better the less energetic the particle is. The results of numerical experiments
ducted basically confirm the estimate (38) for the numerical error introduced, Fig. 8, wh
provides a ground for choosing the optimal pushing interval. The elementary pushing ¢
may extend for an integer number of gyroperiods only. Additional short time-step pre-pt
or post-push should be used to obtain displacement by an arbittaiMaxwell equations
are not exploited in the design of the algorithm, i.e., it may be effectively used if they &
violated either intentionally or due to computational errors.

In its present form the method would be applicable to typical configurations of hig
energy astrophysics, like those described in the papers [1, 4, 6, 9].
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